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This paper is devoted to the derivation of an efficient numerical scheme for the
Kerr—Maxwell system. We begin by studying the 1-D Riemann problem. We obtain
a result of existence and uniqueness for large data. Then we develop a high-order
Roe solver and exhibit solutions in 1-D and 2-D simulations) 2000 Academic Press
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1. INTRODUCTION

The domain of nonlinear optics is a very active one and involves activities of physi
modelling, experimentations, mathematical analysis, and numerical simulation (see [1
for instance). Some interesting applications can be found in the domains of lasers, p
agation through optic fibers and design of optic devices, and interactions between le
and plasmas, for instance. The basic model is the Maxwell-Bloch model, which is ba
on the interaction between the electromagnetic field and atoms with one rest state anc
excited state. Nonetheless some phenomenological models are proposed in the liter:
One frequently used is the Kerr model

dB+curlE=0

1
D —curlH=0 @

with the constitutive laws

B = /,LoH
D=eE+ P+ P
, 2)
PNL =Ol|E| E

32PL + (I T)a P+ Q°PL = yE.
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Here, and in the rest of the paper al&,E, H, andD denote, respectively, the magnetic
field, the electric field, the magnetic induction, and the electric displacerRerit the
linear polarisation an€y, is the nonlinear polarisation. This is the model we will study ir
what follows. More precisely, and for reasons of simplicity, since we want to focus on
nonlinear effects, we will also assume tifat= 0. The main classical way to deal with these
models is to perform a two-time-scale analysis. The fast time scale is tied to the freque
of the electromagnetic wave, and the slow one is tied to the variations of the envel
of the wave. This generally leads to nonlinear Schroedinger equations. A lot of work
been done to give a precise mathematical meaning to these formal asymptotic exans
Furthermore, in the case of Maxwell-Bloch system, a result of existence and unique
has been obtained (see [5]). As far as we know there is no similar result for the Kerr mo
In the domain of numerical methods, we can mention the work of Donat [4], which prese
a 1-D finite volume method based on a Roe solver and a 2-D finite element method,
the work of Taflove [16] around a finite difference method. The purpose of this paper i
develop and present an efficient numerical scheme to simulate this phenomenon ever
unstructured meshes. Section 2 will present some mathematical results, mostly fron
viewpoint of hyperbolic systems. Section 3 will present our numerical scheme, whicl
based on the Roe solver extended to third order by a MUSCL technique and on a three
Runge—Kutta scheme. We will end up with some numerical results in one and two sp:
dimensions.

2. THE MATHEMATICAL STUDY OF THE SYSTEM

2.1. Hyperbolicity of the System
We consider the following model. Let(E, B) be a Lagrangian. We suppose that

_ |E|? |B|?
L(E, B>—5<7> -

is strictly convex with respect t& (we assume that there exists a positive definite matri
P so that the second derivative 8| E|?/2) is greater therP, for all E). Then we define
the electric displacemem by

oL
D=—=¢E.
oE £

So the Hamiltonia{(D, B) =D - E — L(E, B) is a convex energy since it is a Moreau
dual function ofL (see [14, p. 46] for instance). This amounts to

’ X2 / X2 201 X2
5(7>20, 8(7>+X5(7>20 for X > 0.

The convexity of the energy implies that the functibiE) is invertible. We also restrict
ourselves to super-quadratic energies.

DErFINITION2.1. The convex functiofi (X) is said to be super-quadratic if, by definition,

ax F(X) + ax F(Y)
2

VX, Y(|X|2—|Y|2>~( (X =Y) = (f(X) - f(Y))) > 0.
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This implies that
B3 xx F(X)(8,8,8) has the same sign a6- §.

We remark that with this definition, every function of the typg*®, « > 0 is super-
quadratic. This leads t8"(X?/2) > 0.
So the Maxwell system we consider is

D —curlB=0

®3)
B +curlE(D) =0.
We may rewrite this in a nonconservative form:
D —curlB=0
3D\~ 4)
®B+ (4g) curlD=0
Here, we introduce
aD  9*H
=——=—=¢.1d+€&" - EQE 5
dE  OE? + ® ®)

LEMMA 2.1. & + £”|E|?is an eigenvalue of multiplicityof J which is associated to the
eigenvector E€’ is an eigenvalue of multiplicit® of J which is associated to the eigenspace
which is orthogonal to E.

Proof. The proof is left to the reader.m
LEMMA 2.2. The systen) is a quasilinear hyperbolic and symmetrisable system.

Proof. Indeed, the symbol of the system is

<|3|03 ) < 03||§/\>
K = : , (6)
03| J-1 —if/\|03

wheret is the symbol of the space derivation dgd stands for the matrix of the operator

EcR®:>iEAE.

First, we observe tha(lé) and(g) are eigenvectors df for O as an eigenvalue.
Second, we observe thata E is an&’-eigenvector ofl. Thus,

EANE
Vet NENE)

is an eigenvector ok associated to the eigenvalig = i |£]|/V/E'.
Finally, we have to find the last pair of eigenvectors. Let us denote (ﬁj@y and the
eigenvalue by.. We have

iE AV2=21V1 (7)
J Y=g AV =2V2 (8)
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Thus,

I«’EI2

J(V2) = Vv2+, )

whereV ' denotes/ — (1/|£]?)(V - £)&. Itis easy to check that we can look fd2 in the
space spanned lfg, ET). This is due to the special shapehflLet

£\ & £ &
W= JET,—)——(J )ET. 10
( &1/ I&] N (10)

We have(JW, £) =0 and(JW, &€ A E) =0. Furthermore,

ET &\2 £ £ E E
AW, ET) = Ui ) = (JE E)(Jm ) (W, ET), (11)
(% w1
Thus we can choos¢2 =W and we have
M= jél(s sgl) ET E N\ (12)
Gem ) = Qe ) O 27)
If we use formula (5), we obtain
£ &
2 P O ger) 13)
- ’ E E
& (JE’E)
We denote
£ &
e = gL | O ) 14

and we finally obtain that

is en eigenvector for the eigenvalug. The fact that all the six eigenvalues are pure
imaginary numbers shows that the system is hyperbolic. If we let

(319
= : (15)
0z | J

we obtain thaR K + (RK)* =0, so the system is symmetrisablem

Using these results and [17, Thm. 5.6, p. 89], we can derive existence and unique
results for small time and regular enough initial dat®&# In [13], one can also find results
for small and regular initial data in long time range.
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2.2. The 1-D Case

Since the system is hyperbolic we aim at using classical finite volume methods. T
are based on the computation of 1-D problems in the directions which are normal to
interfaces between two adjacent cells. For this reason, we will study the 1-D Kerr—Maxv
system. So we consider that we have 3-D fields but the propagation occurs only in
x-direction. So; Dy = 9; By =0. Also,

3 (Dy) + 3x(B;) =0
3t (Dz) + 0x(—By) =0
%(Bz) + 0x(Ey) =0
3 (—By) + 0x(E) = 0.

(16)

We denote Ey, E;) by E, (Dy, D,) by B and (B,, —By) by B. Thus the nonconservative
formis

0| 12
QW + | — HWW =0, 17)

whereJ 1 is the restriction of the matrid—* to Dy, D,. Since

J=&-1d+& - E®E, (18)
and
50 1d E'E®E 20)

T EE+EEDY

Its eigenvalues are/E’ and 1/ (& + £”|E|?). They are associated to the eigenvector
E, =(—E; Ey) andE. So we have

LEMMA 2.3. The eigenvalues of teD Kerr—Maxwell system are

AE +1
T =
NG
. 11 (21)
2 /5’+5”|E|27
corresponding to the eigenvectors
. +E
W= (8. )
. (22)

wi= (B 25 ).
g/+£//|E|2
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We leave this simple proof to the reader. It also easy to see that the first pair of fielc
linearly degenerate. Furthermore, one can also check that the second pair of fields is ne
linearly degenerate (except when the system is linear), nor genuinely nonlinear, gene
speaking. We finally remark that the characteristic speed of the 1-waves is greater
the speed of the 2-waves, thanks to the super-quadratic assumption. Now we can loc
the Riemann invariants. There are three of them for each eigenvalue; they are denots

Rioroj-With j=1,...,3.

LEMMA 2.4. We have

Rf = |EP?
R . s
( 12> =JEEFB
R1,3
L e (23)
Ry, = E/|E|
R> - B .
( N ) = G(IEI)?:F B
2,3 | |
with
dG(IE
D _ ey e
Here, one has to take care of the fact that the argumefiaol its derivatives is
IE?  |Ex?+[EP?
2 2 ’
Proof. First, notice thad,, = (dp, dg) = (J 13, 9g).
Let us begin with the first pair of eigenvalues:
o g~ ~ =+E
dwRE, - WE = 23 71E, 0) - (EL, \/f) =0.
Similarly,
R\ . (WEYIE®E+VET T\ [(EL
8W 4 . Wl = :i:EL (24)
Ris ¥l 75
E. E.
= - 25
NN (29)
=0. (26)

In the same way, for the second pair of eigenvalues,

J' (G B)®E\ -
s, W = (g - g ) (€ =0
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and
R
aw< i’)-wzi (27)
R2,3
jt G/(|I§|)E@£ + G|E|>-GE®E E
= ( ( RN (G (28)
Fl JererEp
G'E 1 .
= N E (29)
E+ENER ([ 4 EMEPR
=0. (30)

This ends the proof. m
At this stage, we make some remarks.

Remark. If we suppose that the electrical eneigis smooth in the neighborhood of 0,
then the only case where one can have a genuinely nonlinear field is&vaenE|? but
this corresponds to the linearly degenerate case.

Remark. The special forms oRy’; and R5; show that transport of the modulus Bf
and of its orientation are in some sense decoupled. This will help us to construct Riemnr
solvers.

Remark. Before building solvers we remark thatin our framework, there is a natural (i.
physical) notion of entropy. Here, the mathematical Lax entropy (see [8]) is the Hamilton
‘H(D, B) and the flux of entropy is the Poynting vectbn B. There is no viscosity principle
that tells that this entropy should decrease. Nonetheless, this Kerr model neglects absol
in the medium (it also neglects dispersion, in fact). So the physics imposes that the ent
should not increase.

2.3. The 1-D Riemann Problem

Before going to numerical schemes, we have to study the 1-D Riemann problem wi
will help to design solvers. We first remark that the 1-D problem looks like a “p-system,”
there is no result of existence or uniqueness of an entropic solution in general. In the
of one polarisation (i.ezy =0 or E; = 0) a result of Diperna states the global existence ¢
a “viscosity solution” (cf. [3]). Under the same restriction we can use results of T.-P. L
(cf. [10, 11]), who extends the condition of entropy, to ensure uniqueness in a certain ¢
of entropic solutions. Nonetheless, there is no proof that the viscosity solution satisfies
extendable entropy conditon. Furthermore, T.-P. Liu’s solution is not easily extensible
the system with the two polarisations. In this section we will show that, under the condit
(L) that the speed of a 2-shock is smaller than the 1-speed, there is existence and uniqu
of the solution of the Riemann problem (one can refer to [15] for this condition). First v
will exhibit the waves associated with the system.

2.3.1. Contact Discontinuities

The waves associated witlf are contact discontinuities, and the modulus of the field
is unchanged through the discontinuity. We denoteehy Bg the right fields andg, , B,
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the left ones. We have thHEgr| = |E_ | = |E| andEr = |E|or, EL = |E|oL. The Rankine—
Hugoniot relationship implies that

E|2 E|2
Br—BL = :t\/E’('Tl)(ER —-E)==% 5’(%) |[E|(or — o1).

We remark that we could also have used the 1-Riemann invariants.

2.3.2. 2-Rarefaction Waves

The 2-rarefaction waves do not modify the modulus of the electric field since it is
2-Riemann invariant. If we look to self-similar fields = E(¢§) = E(x/t), B=B(§) =
B(x/t), then one has

+1
5’+€”|E|2-

Since|)§| is a decreasing function dfE|, one has|E_| > |Eg| for the + wave, and
the opposite for the- wave. Furthermore, we denate= E| /|E, | = Er/|Eg]|. Since the
2-Riemann invariants are invariant (by definition) through a 2-wave and from the definit
of G above, we have

E(EN) =25 =

Br — BL = £(G(IEr]) — G(IEL])o.

2.3.3. 2-Shocks

We denote by] =U_ — Ug the jump of the quantity) through the shock) = (U, +
Ur)/2, and bys the speed of the shock. The Rankine—Hugoniot relationship is

s[D]-[B] =0 31)
s[B] —[E] = 0.

We deduce that
s’[D] — [E] = 0.

We denoteE = |E|o. Thus, we have
s2(€'[Ello] + [€'[E[1&) — |El[o] — [IEl]o = O.

We investigate the following cases.

e If[|E|]]=0and p] =0, there is not any shock.
e If[|E|]]=0and p]#0, then

s?'El[o] = |E|[o].

SO
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since€ depends only on the modulus Bf So we are in the case of the 1-contact disconti
nuity.

e If [|E|]]#0, thenE_ and Er are colinear. Indeed, if they are independent, th
jump condition implies thas?£f, = s?€] = 1, which by no means is possible since we sup
posed thatEg| # |E, |. Thus, denoting by the common direction oEg andE, , one has
Er=aro andE_ =« 0. Here,a| orr Mmay be negative, positive, or zero. We finally get
that the speed of the 2-shock satisfies

2 _ [o]
- [E'(@?/2)a]

I(ry2
Bk — B =+ M(ER—EL).
V [o]

We notice that, when{] tends to zeros tends tor .

and

2.3.4. Entropy Condition

Here we use the entropy and flux of entropy defined above. We will see how the decrea
of the entropy restricts the set of admissible shocks. Since the entropy is the Hamiltor
and the flux of entropy is the Poynting vector, through a shock, one has

BZ
s 5’|E|2—8—|—|—2| —[E-B]<0.

Thanks to Rankine—Hugoniot relationships, one obtains
S(D[E] - [€]) <O.

SinceD is equal todg £ and€ is super-quadratic, one obtains that the speed of an entroj
shock satisfies

S[IE[] <0.

In other words, the upwind value ¢E|? is smaller than the downwind one:

o If s> 0, then|E | <|ER|.
o If s<O0, then|Egr| <|EL]|.

We notice that this does not ensure unigueness since we can g&ffeaE. = —Eg/2,
either directly through a rightgoing 2-shock or through the combination of a rightgoi
1-contact discontinuity fronEr to —Eg and then a rightgoing 2-shock fromEg to
—Er/2=E,.

2.3.5. Condition (L) of Smoller and Johnson

We need another condition to enforce uniqueness. We will adapt the condition (L)
Smoller and Johnson (see [15, p. 176]) to our case. $kjde< |A7 |, denoting byU * the
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upwind value ofJ for a 2-shock and by ~ the downwind one, we impose that, for entropic
shocks,

(L) Is| < A7 (E7)I.
As |[ET| <|E™|, (L) is equivalent to
|s| <maxaf (Er)|, [AF(EL).
This implies that

[€'(l?/2)a]

e ?/2) < ,
[o]
which is equivalent to

(€' (o ?/2) = £ (|t 1?/2)at > 0.

o —at
Sincela™| < |a~|, one also has’(jat|?/2) < £'(|e~|?/2) and condition (L) is equivalent

to

or

Sincela™|/|a™| > 1 for entropic shocks condition (L) is equivalentdd anda~ having
the same sign.

Finally, we will call admissible 2-shocks those which fulfill both the entropy conditio
and condition (L). We can see that they are those for wkichand E~ point in the same
direction of the spher&?, with |E*| <|E~|.

2.3.6. Existence and Uniqueness of the 1-D Riemann Problem

In this section, we will show that, under the entropy condition and condition (L), we hz
existence and uniqueness for the Riemann problem.

LEMMA 2.5. The only combinations of waves which are admissible foen left to
right, left 1-contact discontinuityleft admissible2-shock or lef2-rarefaction waveright
admissible2-shock or right2-rarefaction waveright 1-contact discontinuity.

Proof. First, we remark that condition (L) and the fact th)a}| < |Af| implies that the
1-discontinuities must be at the two extremities of the chain. Second, for an admiss
shock, one has

ME(ET)| <s < [AF(EM).
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t
E2 B,
2-skock or E_,B
E;s Bl 2-radefaction 2-shock 6r 33
2-rarefaction
1-discoirtinuity 1-diScontinuity
EL -B L E R’ B R

FIG. 1. Geometric situation of the Riemann problem.

Indeed, since is super-quadraticaé,ES(E/lE|, E/|E|) is an increasing function gE|
and so, thanks to Rolle’s theorem, one has with E/|E|

I2E(ETI?) . 0) < Be€(ET1) — 0eE(E™P) -0 _0°E(E"P) ©.0)
B= ’ - (Et—E) -0 - oE? ’
and so
1 - 1 - 1
A (ED)2 = s2 7 A5 (ED)|2

The consequence of this inequality is that one cannot have a 2-shock and a 2-rarefa
wave in the same side. This ends the proof of the lemnss.

Now, we are going to derive the existence and uniqueness of the Riemann problem.
Thanks to the previous lemma, we are in the situation depicted in Fig. 1.
Let us callF the following function:

Rt xRt —» R

F:(X.Y) > G(Y) — G(X) if X>Y
r(Y2\y _ er( X2

(X,Y)H\/E(Z)i_i(Z)x-(Y—X) if X <Y

We then express the conditions linking the different fields in Fig. 1 from left to right.

Left contact discontinuityOne has

=] EL
E = E y = —, = —,
|Eal = |EL| o1 Ey] oL EL]
and

|ELI?
2

Bi—BL=- 5’( )IEL|(01—UL)-
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Left 2-shock or 2-rarefaction wav®ne has

E
F;:(m:Ul and By — By = 02F(|Ez], |ELD.

From this we deduce

E, |2 E, |2
B,— B = 5/(' ZL' )EL—az< 8(' ZL' >|EL|—F<|E2|,|EL|)>. (32)

Similarly, one has
Right 2-shock or 2-rarefaction wav®ne has

E
—— and Bz — B; = 02F(|E2|, |E3).
| Es|

02 = 03

Right contact discontinuityOne has

E Er|?
Esl = [Exl, on=—", and Bg-Bs= 5/(' R')|ER|<GR—UZ>.
|ERr| 2

From this we deduce

Er|? Er|?
Br— B, = 5/(' ;' )ER—az< 5/(' ;' )|ER|—F<|E2|,|ER|>>. (33)

Summing Egs. (32) and (33), we obtain

2 2
oo () (e
Er|? E, |2
_ o—2<F<|E2|,|ER|>+F(|E2|,|EL|>>—az<,/£/(%)|ER|—,/8’(' ! )|EL|>,

(34)

whichis an equationii,. Thus the existence and unigueness of the solution of the Rieme
problem amount to the existence and uniquene$s@olution of the previous equation.
LEMMA 2.6. In expressior{34),the factor ofo; is a continuousdecreasing function of
|E2|, going fromO to —oo, when| E;| goes fronD to +oo.
Proof.

Indeed, first, if E;| = 0, itis clear that the factor vanishes. Second, sheX, Y)
is continuous, the factor is continuous. In faetis C1. Third, whenX <Y,

/sz — /Y—Z — /Lz 2, //Xi2
8XF(X’Y)ZE(Z)X 5(2)Y+2(XF(>Z)\£)5(2)+X 5(2))<0




512 ARMEL DE LA BOURDONNAYE

sinceX <Y.WhenX >Y,

X2 X2
IFX,Y)=— /& =) +Xx2.-&(=) <.
2 2
Furthermore, Sincé is strictly convex ink,
X2 X2
2 X2 e ==

is bounded from below and g8(X, Y) goes to—oo when X goes to+oo. This ends the
proof of the lemma. m

Now, if the left-hand side of Eq. (34) is vanishing, thé&| = 0 ando, is not determined
but E; = 0 is the unique solution.

Ifthe left-hand side does not vanish, it can be writtefL&kS| o, s With obvious notations.
Thuso, = —oLys and| E;| is uniquely determined thanks to the previous lemma.

Finally, if E; does not vanish, we can go backHEe and Ez in a unique way, and so for
the magnetic fields.

If E;=0, the 1-discontinuities and the 2-shocks have the same slope and so there
no room forEz andE;. Once again we go back # in a unique way.

So finally we have obtained.

THEOREM 2.1. The system(16) with (E(t=0), B(t=0))=(E_, B.) if x <0 and
(E(t =0), B(t =0)) = (Eg, Bg) when x> 0 has a unique solution compounded of contac
discontinuitiesshocksand rarefaction waves under the condition of diminishing entrop
and condition(L).

Before going into numerical issues we add a physical comment. The previous res
have shown a kind of decoupling between the phase and the modulus of the ele
field, each being tied to a different Riemann invariant and thus propagating at a diffel
speed.

3. THE DISCRETIZATION SCHEME

In this section we begin by recalling the basics about finite volume techniques (see
[9]). Then we will describe more precisely two types of fluxes and two time schemes.

3.1. Finite Volume Space Discretisation

We denote by2y, the approximate domain of computation, iya tesselation of2,, and
by W, the approximation ofV on 7;,. We also denote bg; the cells of7y, by 9C; their
boundaries, and b§C;;, the sedC; NdC;. Wi is the approximate value &¥ in the cell
dC;. If we denote symbolically our hyperbolic system
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then, integrating in each cell;, we obtain

at/ de~|—2/ F(W)ndo =0, (36)
i i aC;j;

wheren is the outgoing normal. Now the first term is replacedMyC; |, where|C;| is the
volume ofC;. Most of the solvers’ technology relies on the choice of the valu&/afsed
in the second integral. This integral is replaced by

zj:/aci,- D,

where®;; is the flux function associated to a particular scheme.

3.1.1. Godunov Fluxes

In the case of a Godunov scheme,
®jj = dF =n- F(WEW, W))),

whereWE (W, W;) is the exact solution or =0 of the 1-D Riemann problem with the
following Cauchy data:

forx <0; W=W, and forx > 0; W =W,;.

In general, these fluxes are not easy to compute since one has to know exactly the fun
G of the previous section.

3.1.2. Roe Fluxes

In the case of Roe fluxes, we solve the Riemann problem, but instead of using entr
and (L) conditions, we enforce to have only shocks. So, if we define the n#gtei, W;)
to be such thal (W) — F (W) = AR(W;, W) (W, — W), then we defin&VR as the solution
in x =0 of

XW + AR(W, W) 3xW =0
with the same Cauchy data as for the Godunov fluxes. Finally the Roe flux is
®jj = ®f =n- F(WRW, W))).
It can also be shown that

of —n. (F(vvi)+F<wj)

5 _|A(VViij)|(Wj_VVi)>-

Thisway is more easy toimplement since one only has to compute the Aattonetheless,
it leads to nonadmissible shocks. But we will see that for small discontinuities, the res
resemble those obtained with Godunov fluxes.
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3.1.3. High-Order Approximations

As is well known, the two methods presented above are only approximations of or
1 in space. We will use the idea of the MUSCL technique developed by Van Leer (
[6, 18]). The idea is to change the right and left values in the flux functions according
an interpolation scheme. Namely, we W% andW;;, where the first one is a third-order
approximation on thieside of the interface and the second one is a third-order approximati
on thej side. In one dimension, on a regular mesh, it amounts to

Wiit1 = 5/60W + (2/6)Wii1 — (1/6)Wi—a,
and
Wit1i = (5/6)Wita1 + (2/6)W — (1/6)Wi 2.
This leads to third-order spatial approximations in the case of regular meshes.

3.2. Time Discretisation

To increase the time order we have used the order 2 Hancock predictor corrector sct
(see [19]) and an order 3 nonlinear Runge—Kutta scheme (see for instance [12] for a
cussion on this time scheme).

4. NUMERICAL RESULTS

In this section, we sef(|E|?/2) = E?/2 + E*/12 so thatD = E(1 + |E|?/3) and

G(E) = log(|E| + v/1+ |E|?) + |E|\/1+ |E|?
= > .

4.1. 1-D Results

The first experiments are done on an infinite line (i.e., we have implemented peric
boundary conditions). The space stepis setto 0.001. In the first series, we compare Goc
scheme, Godunov schemepredictor—corrector and order 2 MUSCL technique, and th
same with an order 3 MUSCL technique. The first test is with a rightgoing wave satisfyi
att =0 if x <0.25 orx > 0.75, thenE =0, elseE, = 1. For order 1 and order 3, the time
step is set to 0.001. For reasons of stability, it is set to 0.0005 for order 2. Reduitslat
are presented in Fig. 2. The first remark is that the shock speed is well predicted by
three approximations. The second one is that order 1 seems to be the best, but this i
to the special choice for the time step. This cannot be reproduced in multi dimensic
simulations. The third remark is that order 2 is more unstable than the others, and the
remark is that both order 2 and order 3 produce spurious oscillations around the shock.
is a well-known fact.

Now, we change the initial situation. We usexik 0.25 orx > 0.75, thenE =0, else
E,=0.2+ 0.8« sign(x — 0.5). Results are plotted in Fig. 3. In this case, the results are ve
different. The first order completely misses the good solution of the Riemann problem v
condition (L). In fact, it could be shown that it converges toward the solution of the Riema
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FIG. 2. Squared wave for Godunov’s solver-I.

1000

problem with the T.-P. Liu condition. Order 2 is not precise on the capture of the cont
discontinuity, since this one should be between 1 -afigdso here, the error is of 20%. We

again observe the oscillations at the back of the shocks.

The next case is almost the same but we permute the upwind and downwind initial val
so that the contact discontinuity is followed by a rarefaction wave. So we use .25

1.2
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FIG. 3. Local Riemann problem for Godunov's solver.
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FIG. 4. Local Riemann problem for Godunov's solver-II.

orx > 0.75, thenE =0, elseE, = —0.2+ 0.8 sign(x — 0.5). The results are presented in
Fig. 4. Here again, we observe that order 1 misses the good solution and that order
better than order 2 except for the oscillations at the back of the shocks.

The last case of this series is the consideration of a wave packet:

E, = e 100:x-05% 4 coq(x — 0.5) % 77 % 40).

This case is of importance, since Kerr—Maxwell models are mainly used to simulate hi
frequency beams or solitary structures. The results are shown in Fig. 5. Here, we car
the diffusive effect of the order 1 scheme. Furthermore, we can observe that the deph:e
is much more emphasised with the third-order approximation. This effect is in accorda
with the physics. Indeed, since the index of the medium increases with the value of
electric energy, the wavelength diminishes. This is what we observe at the back of the v
packet.

In the next series of results we compare the Roe solver with the Godunov solver, t
with either predictor—corrector or order 3 Runge—Kutta scheme. The spatial approxima
will be the order 3 one. The first test corresponds to the second one of the previous se
At t =0, we use ifx <0.25 orx > 0.75, thenE =0, elseE, =0.2+ 0.8x sign(x — 0.5).
Results are shown in Fig. 6. Here we remark that Roe and Godunov coincide perfe
so that we mainly compare here the time schemes. Thus, the second remark is the
predictor—corrector is more accurate for the speeds and levels of the shocks but also
oscillatory.

The next test corresponds to the third of the previous seriets=AY, we use ifx < 0.25
orx > 0.75, thenE =0, elseE, = —0.2 4 0.8 x sign(x — 0.5). Results are shown in Fig. 7.
Again we remark that Roe and Godunov coincide and that the predictor—corrector is n
accurate and more oscillatory than the Runge—Kutta scheme.
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FIG.5. Wave packet for Godunov’s solver.

The last 1-D test is about the wave packett AtO,
E, = e 10x=05% , coq(x — 0.5) % 7 % 40),

and the results are shown in Fig. 8. We observe again the perfect accordance of Ro

15 . . ' .
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Godunov+RK ~-----~
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2 TT-30 =] Que—
1 i 1 -
05 | |
0
05 | 1
-1 1 1 [ ,
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FIG. 6. Comparison of Roe and Godunov with Runge—Kutta or predictor—corrector.
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FIG. 7. Comparison of Roe and Godunov with Runge—Kutta or predictor—corrector.

Godunov solvers. The better quality of the predictor—corrector is demonstrated here
the fact that it is less diffusive and better reflects the variation of the wavelength than
Runge—Kutta scheme. For this reason we now make the choice of using only the predic
corrector. Furthermore, since the Roe solver is much cheaper than the Godunov one
since they coincide, we make the choice of using the first one.

0.6 T T T T
Godunov+Pred. Cor.
Godunov+RK -
Roe+Pred. Cor
n Roe+RK -
04 F b
o2} I .
!
i
0 \/\J
|
0.2} ‘1 | E
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0 200 400 600 800 1000

FIG. 8. Comparison of Roe and Godunov with Runge—Kutta or predictor—corrector.
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FIG.9. A wave packetin a linear medium.

FIG. 10. A wave packet in a nonlinear medium.

FIG. 11. A Gaussian beam in a linear medium.
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FIG. 12. A Gaussian beam in a nonlinear mediuh (= 2* 1).
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FIG. 13. A Gaussian beam in a nonlinear mediuvb (= 4* 1).

4.2. 2-D Results

In this section, we present two test cases. The first one is a wave packet through eitl
linear medium or a nonlinear one. The second case is a Gaussian beam travelling thr
the same types of media. The domain of computation is the rectangle [0; @7D.2].
The spatial step of discretisationdsc = Ay = 10~3 and the time step iat =0.5 x 1073,
We begin by a wave packet propagating rightwardt AtO we set

E, = 2@ 100+ (x-0.257 5~2500x (y-0.17 | cog1007 (X — 0.5)),

and we present the modulus of the electric fielt-at250. In the linear medium (Fig. 9),
we observe that the packet spreads itself and that its maximum intensity diminishe:s
the nonlinear medium (Fig. 10), the packet is concentrated along its axis and its maxin
intensity is greater than the initial one. This is a typical behavior of a Kerr medium.

For the Gaussian beam, we use as an ingoing boundary conditioa @tan electric
field polarized along the axis. The wavelength is = 1/50, and the belt radius is chosen
aswp = 2* A, S0 that the angle of aperture of the beam isartan(./ (7w wg)) = 9°,

E,(x = 0) = e Y/¥Isin(wt),

with w =27 /1. For details about Gaussian beams, one can refer, for instance, to [2].
observe the beam = 1000. In Fig. 11 the beam propagates approximately with the anc
of apertured. To the contrary, in the Kerr medium we can see (Fig. 12) that the beam fi
concentrates (itis the self-focusing effect) and then splits into two filaments as itis classic
observed in the experiments. In the last picture (Fig. 13), we have doubled the valye o
and thus the energy of the 2D beam. The nonlinear medium is unchanged. Nonethe
we have modified the size of the computation box to improve the comprehension of
picture. The box is now [0; 0.5¢ [0; 0.3]. We observe here that the number of filaments i
increased.

5. CONCLUDING REMARKS

This paper presents the derivation of a numerical scheme for the propagation of eles
magnetic waves in Kerr nonlinear media. We first noted the hyperbolicity of the syste
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Then we obtained existence and uniqueness for the Riemann problem for large date
used this result to build a Godunov scheme. We observed that the Roe solver led to the

re

sults as the Godunov one. Finally we demonstrated the efficiency of our method or

simulation of a multi-filamentation of a Gaussian beam.

w N e
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